
Eric Benhamou eric.benhamou@dauphine.eu

Remy Belmonte remy.belmonte@dauphine.eu

Masterclass 8

Algorithmic and advanced

Programming in Python

1

Algorithmic and advanced Programming in Python

Outline

1. What is Searching

2. Type of Searching

3. Unordered Linear Search

4. Sorted/Ordered Linear Search

5. Binary Search

6. Interpolation Search

7. Bitonic search

2

Algorithmic and advanced Programming in Python

Reminder of the objective of this course

• People often learn about data structures out of context

• But in this course you will learn foundational concepts by building a
real application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data
structures

3

Algorithmic and advanced Programming in Python

Reminder of previous session

• In Master class 8, we discuss about Gradient boosting decision trees?

• Question: can someone summarize it?

4

Algorithmic and advanced Programming in Python

• In computer science, 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 is the process of finding an item with specified
properties from a collection of items.

• The items may be stored as records in a database, simple data elements in arrays,
text in files, nodes in trees, vertices and edges in graphs, or they may be elements
of other search spaces. .

• Question: why do we need searching?

What is Searching?

5

Algorithmic and advanced Programming in Python

We need searching!

• 𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 is one of the core computer science algorithms.

Google is your best friend!

• We know that today’s computers store a lot of information. To retrieve
this information proficiently we need very efficient searching
algorithms.

• Question: how is this related to our data structure class?

6

Algorithmic and advanced Programming in Python

Data structure is fundamental!

• To retrieve this information proficiently we need very efficient
searching algorithms.

• There are certain ways of organizing the data that improves the
searching process. That means, if we keep the data in proper order, it is
easy to search the required element.

• Sorting is one of the techniques for making the elements ordered. In
this chapter we will see different searching algorithms.

7

Algorithmic and advanced Programming in Python

Types of Searching

• Unordered Linear Search

• Sorted/Ordered Linear Search

• Binary Search

• Interpolation search

• Binary Search Trees (this is related to our chapter on trees)

8

Algorithmic and advanced Programming in Python

Unordered Linear Search

• Let us assume we are given an array where the order of the elements is
not known. That means the elements of the array are not sorted.

• In this case, to search for an element we have to scan the complete
array and see if the element is there in the given list or not..

• This is obviously very inefficient

• Question: what is the complexity?

• Question: How can we improve?

9

Algorithmic and advanced Programming in Python

Sorted/Ordered Linear Search

• If the elements of the array are already sorted, then in many cases we
don’t have to scan the complete array to see if the element is there in
the given array or not.

• In the algorithm below, it can be seen that, at any point if the value at
𝐴[𝑖] is greater than the 𝑑𝑎𝑡𝑎 to be searched, then we just return −1
without searching the remaining array.

10

Algorithmic and advanced Programming in Python

Sorted/Ordered Linear Search

• Question: what is Time complexity and space complexity?

11

Algorithmic and advanced Programming in Python

Sorted/Ordered Linear Search

• Time complexity of this algorithm is O(𝑛). This is because in the worst
case we need to scan the complete array. But in the average case it
reduces the complexity even though the growth rate is the same.

• Space complexity: O(1).

• Note: For the above algorithm we can make further improvement by
incrementing the index at a faster rate (say, 2). This will reduce the
number of comparisons for searching in the sorted list.

12

Algorithmic and advanced Programming in Python

Can we improve searching?

• Question: can you find of a mechanism to improve searching?

13

Algorithmic and advanced Programming in Python

Binary Search

• Let us consider the problem of searching a word in a dictionary.
Typically, we directly go to some approximate page [say, middle page]
and start searching from that point. If the 𝑛𝑎𝑚𝑒 that we are searching
is the same then the search is complete. If the page is before the
selected pages then apply the same process for the first half; otherwise
apply the same process to the second half. Binary search also works in
the same way. The algorithm applying such a strategy is referred to as
𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑒𝑎𝑟𝑐ℎ algorithm.

14

Algorithmic and advanced Programming in Python

Code: iterative version

15

Algorithmic and advanced Programming in Python

And recursive version

16

Algorithmic and advanced Programming in Python

What is the complexity?

• Question: what is the complexity?

17

Algorithmic and advanced Programming in Python

Complexity

• Recurrence for binary search is 𝑇(𝑛) = 𝑇(N/2) +Θ(1). This is because
we are always considering only half of the input list and throwing out
the other half. Using 𝐷𝑖𝑣𝑖𝑑𝑒 𝑎𝑛𝑑 𝐶𝑜𝑛𝑞𝑢𝑒𝑟 master theorem, we get,
𝑇(𝑛) =O(𝑙𝑜𝑔𝑛).

• Time Complexity: O(𝑙𝑜𝑔𝑛). Space Complexity: O(1) [for iterative
algorithm].

18

Algorithmic and advanced Programming in Python

Alternative?

• Question: can we do better than binary search?

19

Algorithmic and advanced Programming in Python

Interpolation Search

• Undoubtedly binary search is a great algorithm for searching with
average running time complexity of 𝑙𝑜𝑔𝑛.

• It always chooses the middle of the remaining search space, discarding
one half or the other, again depending on the comparison between the
key value found at the estimated (middle) position and the key value
sought. The remaining search space is reduced to the part before or
after the estimated position.

20

Algorithmic and advanced Programming in Python

Interpolation Search

• In the mathematics, interpolation is a process of constructing new data
points within the range of a discrete set of known data points. In
computer science, one often has a number of data points which
represent the values of a function for a limited number of values of the
independent variable. It is often required to interpolate (i.e. estimate)
the value of that function for an intermediate value of the independent
variable.

21

Algorithmic and advanced Programming in Python

Interpolation Search

• For example, suppose we have a table like this, which gives some
values of an unknown function f. Interpolation provides a means of
estimating the function at intermediate points, such as x = 5.5.

22

Question: What kind of
interpolation can we do?

Algorithmic and advanced Programming in Python

Linear interpolation

• There are many different interpolation methods, and one of the
simplest methods is linear interpolation.

• Consider the above example of estimating f(5.5). Since 5.5 is midway
between 5 and 6, it is reasonable to take 𝑓(5.5) midway between 𝑓(5)
= 50 and 𝑓(6) = 60, which yields 55 ((50+60)/2).

• Linear interpolation takes two data points, say (𝑥1, 𝑦1) and (𝑥2, 𝑦2,
and the interpolant is given by:

23

Algorithmic and advanced Programming in Python

Interpolation search

• With above inputs, what will happen if we don’t use the constant ½,
but another more accurate constant “K”, that can lead us closer to the
searched item.

24

Algorithmic and advanced Programming in Python

Intuition

• This algorithm tries to follow the way we search a name in a phone book, or
a word in the dictionary.

• We, humans, know in advance that in case the name we’re searching starts
with a “m”, like “monk” for instance, we should start searching near the
middle of the phone book. Thus if we’re searching the word “career” in the
dictionary, you know that it should be placed somewhere at the beginning.

• This is because we know the order of the letters, we know the interval (a-z),
and somehow we intuitively know that the words are dispersed equally.

• These facts are enough to realize that the binary search can be a bad choice.

• Indeed the binary search algorithm divides the list in two equal sub-lists,
which is useless if we know in advance that the searched item is somewhere
in the beginning or the end of the list.

• Yes, we can use also jump search if the item is at the beginning, but not if it
is at the end, in that case this algorithm is not so effective.

25

Algorithmic and advanced Programming in Python

Comparing with binary search

• The interpolation search algorithm tries to improve the binary search.
The question is how to find this value? Well, we know bounds of the
interval and looking closer to the image above we can define the
following formula.

• This constant 𝐾 is used to narrow down the search space. For binary
search, this constant 𝐾 is (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2.

26

Algorithmic and advanced Programming in Python

• Now we can be sure that we’re closer to the searched value. On
average the interpolation search makes about 𝑙𝑜𝑔(𝑙𝑜𝑔𝑛) comparisons
(if the elements are uniformly distributed), where 𝑛 is the number of
elements to be searched. In the worst case (for instance where the
numerical values of the keys increase exponentially) it can make up to
O(𝑛) comparisons.

• In interpolation-sequential search, interpolation is used to find an item
near the one being searched for, then linear search is used to find the
exact item

27

Algorithmic and advanced Programming in Python

Efficiency

• Question: when is this algorithm appropriate and efficient?

28

Algorithmic and advanced Programming in Python

Efficiency

• Question: when is this algorithm appropriate and efficient?

• For this algorithm to give best results, the dataset should be ordered
and uniformly distributed

29

Algorithmic and advanced Programming in Python

Comparing Basic Searching Algorithms

30

Algorithmic and advanced Programming in Python

Application

• Given an array of 𝑛 numbers, give an algorithm for checking whether
there are any duplicate elements in the array or not?

• Question: any solution?

31

Algorithmic and advanced Programming in Python

Application

• Given an array of 𝑛 numbers, give an algorithm for checking whether
there are any duplicate elements in the array or not?

• This is one of the simplest problems. One obvious answer to this is
exhaustively searching for duplicates in the array. That means, for
each input element check whether there is any element with the same
value. This we can solve just by using two simple 𝑓𝑜𝑟 loops. The code
for this solution can be given as:

32

Algorithmic and advanced Programming in Python

Check duplicates brute force

• Question: time and space complexity?

33

Algorithmic and advanced Programming in Python

Check duplicates brute force

• Time Complexity: O(𝑛2), for two nested 𝑓𝑜𝑟 loops.

• Space Complexity: O(1).

34

Algorithmic and advanced Programming in Python

Question: can we improve?

35

Algorithmic and advanced Programming in Python

Can we improve?

• Yes, Sort the given array.

• After sorting, all the elements with equal values will be adjacent. Now,
do another scan on this sorted array and see if there are elements with
the same value and adjacent.

36

Algorithmic and advanced Programming in Python

Corresponding algorithm

• Question: complexity?

37

Algorithmic and advanced Programming in Python

Complexity

• Time Complexity: O(𝑛𝑙𝑜𝑔𝑛), for sorting (assuming 𝑛𝑙𝑜𝑔𝑛 sorting
algorithm). Space Complexity: O(1).

38

Algorithmic and advanced Programming in Python

Can you think about another solution?

39

Algorithmic and advanced Programming in Python

Another solution?

• Yes, using hash table. Hash tables are a simple and effective method
used to implement dictionaries. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 time to search for an
element is O(1), while worst-case time is O(𝑛). Refer to 𝐻𝑎𝑠ℎ𝑖𝑛𝑔
chapter for more details on hashing algorithms. As an example,
consider the array, 𝐴 = {3, 2, 1, 2, 2, 3}.

• Scan the input array and insert the elements into the hash. For each
inserted element, keep the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 as 1 (assume initially all entires
are filled with zeros). This indicates that the corresponding element
has occurred already. For the given array, the hash table will look like
(after inserting the first three elements 3, 2 and 1):

40

Algorithmic and advanced Programming in Python

Another solution with hashing

• Now if we try inserting 2, since the counter value of 2 is already 1, we
can say the element has appeared twice.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛).

41

Algorithmic and advanced Programming in Python

Another improvement

• Let us assume that the array elements are positive numbers and also all
the elements are in the range 0 to 𝑛 − 1. For each element 𝐴[𝑖], go to
the array element whose index is 𝐴[𝑖]. That means select 𝐴[𝐴[𝑖]] and
mark - 𝐴[𝐴[𝑖]] (negate the value at 𝐴[𝐴[𝑖]]). Continue this process
until we encounter the element whose value is already negated. If one
such element exists then we say duplicate elements exist in the given
array. As an example, consider the array, 𝐴 = {3, 2, 1, 2, 2, 3}.

42

Algorithmic and advanced Programming in Python

steps

43

Algorithmic and advanced Programming in Python

steps

44

Algorithmic and advanced Programming in Python

Question: complexity?

45

Algorithmic and advanced Programming in Python

Complexity

• Time Complexity: O(𝑛). Since only one scan is required. Space
Complexity: O(1).

46

Algorithmic and advanced Programming in Python

A little bit more challenging

• Two elements whose sum is closest to zero:

• Given an array with both positive and negative numbers, find the two
elements such that their sum is closest to zero. For the below array,
algorithm should give −80 and 85. Example: 1 60 − 10 70 − 80 85.

• Question: can you solve this?

47

Algorithmic and advanced Programming in Python

Brute force approach

• The brute force approach is simple. Loop through each element 𝐴[𝑖]
and find if there is another value that equals to 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐴[𝑖].

48

Algorithmic and advanced Programming in Python

Can we improve?

• Yes, using sorting

49

Algorithmic and advanced Programming in Python

Sorting solution

50

Algorithmic and advanced Programming in Python

Sorting solution

• Time Complexity: O(𝑛𝑙𝑜𝑔𝑛), for sorting. Space Complexity: O(1).

51

Algorithmic and advanced Programming in Python

Variation

• Find elements whose sum is closest to given target.

• Given an array with both positive and negative numbers, find the two
elements such that their sum is closest to given target. Given A = [2, 7,
11, 15], target = 9. Because, A[0] + A[1] = 2 + 7 = 9, return [0, 1].

52

Algorithmic and advanced Programming in Python

Brute force

53

Algorithmic and advanced Programming in Python

A better solution

• Solution: To improve our run time complexity, we need a more
efficient way to check if the complement exists in the array. If the
complement exists, we need to look up its index. What is the best way
to maintain a mapping of each element in the array to its index? A hash
table.

• We reduce the look up time from O(𝑛) to O(1) by trading space for
speed. A hash table is built exactly for this purpose, it supports fast
look up in near constant time. I say "near" because if a collision
occurred, a look up could degenerate to O(𝑛) time. But, look up in
hash table should be amortized O(1) time as long as the hash function
was chosen carefully.

54

Algorithmic and advanced Programming in Python

A simple implementation

• A simple implementation uses two iterations. In the first iteration, we
add each element's value and its index to the table. Then, in the second
iteration we check if each element's complement (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐴[𝑖])
exists in the table. Beware that the complement must not be 𝐴[𝑖] itself!

• Time complexity: O(𝑛). We traverse the list containing 𝑛 elements
exactly twice. Since the hash table reduces the look up time to O(1),
the time complexity is O(𝑛). Space complexity: O(𝑛). The extra space
required depends on the number of items stored in the hash table,
which stores exactly 𝑛 elements.

55

Algorithmic and advanced Programming in Python

Simple implementation

56

Algorithmic and advanced Programming in Python

In one pass!

• It turns out we can do it in one-pass. While we iterate and inserting
elements into the table, we also look back to check if current element's
complement already exists in the table. If it exists, we have found a
solution and return immediately.

57

Algorithmic and advanced Programming in Python

In one pass

58

Algorithmic and advanced Programming in Python

Complexity

• Time complexity: O(𝑛). We traverse the list containing 𝑛 elements
only once. Each look up in the table costs only O(1) time. Space
complexity: O(𝑛). The extra space required depends on the number of
items stored in the hash table, which stores at most nn elements.

59

Algorithmic and advanced Programming in Python

Bitonic search

• Let A be an array of 𝑛 distinct integers. Suppose A has the following
property: there exists an index ≤ 𝑘 ≤ 𝑛 such that 𝐴[1], . . . , 𝐴[𝑘] is an
increasing sequence and 𝐴[𝑘 + 1], . . . , 𝐴[𝑛] is a decreasing sequence.
Design and analyze an efficient algorithm for finding 𝑘.

• Similar question: Let us assume that the given array is sorted but
starts with negative numbers and ends with positive numbers [such
functions are called monotonically increasing functions]. In this array
find the starting index of the positive numbers. Assume that we know
the length of the input array. Design a O(𝑙𝑜𝑔𝑛) algorithm.

60

Algorithmic and advanced Programming in Python

Bitonic search

• Solution: Let us use a variant of the binary search.

61

Algorithmic and advanced Programming in Python

Corresponding code

62

Algorithmic and advanced Programming in Python

In Lab session

• Lab is done by Remy Belmonte next week

63

